While artificial intelligence is considered the golden age within technology and projects, it is not as plain sailing as it sounds. There are various obstacles that engineers and developers a-like will face because machine learning problems require a whole different skill set than just coding and logic definition. Automation has more applications than ever before. Understanding the limitations and challenges ML specialists face is essential so that expectations can be simmered regarding what machine learning developers and engineers can do.

The ML Developer Challenges

Preparing the Data

Through preparation, integration, and coding capabilities, developers would be required to ensure that ML algorithm processes work. Data preparation is one of the critical challenges machine learning specialists face. Cleansing, labeling, and general checking are essential responsibilities for a developer, not only in internal but also external environments.

Developer Recruitment

The recruitment of a team is also a key challenge. Only 7.9% of data scientists work specifically as machine learning developers and engineers. Without the necessary personnel with the right skills, this heightens the risk of staying behind competitors and being outpaced by newly emerged start-ups.

Developing the Program and Algorithm

Traditional software development can be straightforward as long as you understand the coding logic. Machine learning, however, has more layers. Engineers not only build the data and program logic to develop an output, but they would also need to:

  • organize the data massive;
  • train the algorithm;
  • output and write a program that ensures the machine learns the data to perform the correct actions.

It makes things more complicated and increases the uncertainties where even the most experienced coding developers may not have the answer.

Developing the Data for the Algorithm

After developing the algorithm, the correct data set needs to be prepared. Information is also not cheap, either. You will need to understand what problem you want the ML algorithm to resolve. The data needs to ensure the machine learns the appropriate information set to deliver the correct output.

Data Privacy Breaches and Complaints

Further development of machine learning technologies tends to be blocked due to data privacy concerns. The amounts of data used for the repetition of tasks and capturing patterns require excessive processed massive. However, neglect of digital privacy, such as transparent use, mainly concerns personal information. And the world community is working on the problem.

The new General Data Protection Regulations (GDPR) has made it more restrictive in the way personal information can be used. Big data technologies ensure that the regulations cannot be violated.


Framework Fragmentation

When being gifted with specific programming skills, choose the correct ML framework is challenging. Luckily, there are a variety of ML models available to cater for a variety of languages. However, the right toolkit may not be available for individual developers where an ML framework may not be compatible with a language. However, if you’re a Python developer, the ML journey will be smoother.

Find out how CHI Software’s best practices and smart solutions help to face AL/ML challenges Contact us

What can we do to answer challenges?

Challenges we face while practicing ML and engaging in a machine learning project increases risks of failure. But if we’ll get thru, the reward will be enormous. To succeed, we need to be patient, respect the challenges the ML brings, and find people who genuinely understand machine learning.

About the author

Yuliia Melnik Copywriter

Related Articles

AI and Voice Recognition Technology: Question of Trust

Many have invested in voice technologies driven by artificial intelligence, abbreviated as AI. Now it produces accurate responses that aim to mirror human reactions acutely. Artificial intelligence and voice recognition technology has now become more ubiquitous and accepted by major enterprises, start-ups, and governmental industries. However, this hasn’t been free of trust concerns. While these voice technology products have gained...

Read more

Fintech Solutions Disrupting Traditional Banking Industry: Market Overview

In the years ahead, the banking sector is waiting for a growing fintech impact on the banking industry. "Uberization" may reduce the number of staff in the industry to 50%. Profitability in some areas of banking services will fall to more than 60%.   It was stated by the former head of one of the largest banks in the UK, Barclays Anthony Jenkins,...

Read more

Is It Reasonable to Hire Ukrainian IT Experts for Your Projects?

Everything changed overnight for Ukrainian software development companies in many major cities of Ukraine. Following the terror attack of Russian troops on Feb 24, we are at war for almost a month now. Our initial task was to evacuate our staff from places under heavy fire to safe locations and make sure that the data of our clients is safe...

Read more

Let’s bring your idea to
life together!

    Successfully applied!