Affective Computing The Humanized Artificial Intelligence

Affective Computing: The Humanized Artificial Intelligence

Contact Us
00:00
00:00
1x
  • 0.25
  • 0.5
  • 0.75
  • 1
  • 1.25
  • 1.5
  • 1.75
  • 2
author-image
Business Development Executive at CHI Software Business Development Executive at CHI Software

We talked a lot about how technologies help businesses to catch every glimpse of customers’ needs. Today I’d like to share about an emerging technology that has already become the Next Big Thing for both businesses and high-technology circles. 

Let me tell you about Affective AI.

affective computing

The technology development

Affective computing exists at the intersection of computer science, psychology, and cognitive science. It allows computers or systems to recognize, process, and adopt human feelings and emotions. 

While you and I can only be surprised or skeptical about how machines are good at things that have belonged only to human nature before, many studies prove that Affectional AI is even more accurate in capturing visual, textual, and audio resources. With such a kind of data, businesses can suggest a more precise and highly-customizable approach and make more informed decisions in processes closely related to their clients, such as marketing or sales.

AI technology

The technology itself didn’t emerge just two days ago. The machines have already learned to recognize emotions through facial expressions and speech recognition. Due to the surprising similarity of different cultures and nations, computers can classify these emotions with greater accuracy.

Affective computing rapid growth has become possible due to the wide use of high-resolution cameras, high-speed broadband connection, and significant improvement in both ML and Deep learning technologies.

The critical system elements

So what do such solutions include when shaping human emotion?

  • A high-resolution camera to obtain video;
  • High-speed internet connection for video communication;
  • ML models to recognize emotions on video.

Interaction of these components has significantly improved due to fast broadband connection, allowing uploading video in real-time. Besides, deep learning solutions that need a vast amount of data and computational power have become easier to implement. 

How does it all work?

Most of such applications use labeled training data to teach ML models that recognize emotions in speech or videos. As deep learning solutions performance directly depends on the vast amount of usable data, companies working in this field strive to broaden the volume of available labeled items. 

How does a machine capture our emotions?

  • The human face can be taken from the background;
  • Facial geometry is also estimated (the position of eyes, nose, mouth);
  • Given the facial geometry, the system usually normalizes facial expressions while discarding head rotations or other head movements;
  • Eye movements, gestures, and postures are generally taken into account.

If talking about recognizing emotions through voice, the process should be similar to something like the following:

  • High-sensitive equipment records variances and textures in users’ voices to discover later even the slightest difference in peoples’ speeches. 
  • These data are then applied for voice analytics to identify peoples’ intentions during voice calls. 
  • Voice recognition systems consider such critical elements as emotion, language style, and social tendencies.

Real-life Affective AI employment

affective computing app

What applications mostly use Affectional computing except for obvious online retail to identify and increase customer satisfaction? Here are just a few examples:

  • For instance, Affectional AI is highly interested in Human Resourcing to identify suitable recruitment methods and track employee satisfaction.
  • Besides, the Insurance sector also applies technology to detect and prevent fraud cases.
  • Finally, the Educational system also leverages Affective computing to evaluate suggested learning methods’ efficiency or support children requiring special educational needs.

To round up, what can I say? The technology is still developing and raises a lot of questions and controversial opinions. But I’ll leave them for another story if you are interested, of course. 

What’s your take? I’m waiting for you in the comments.

About the author
author-image
Business Development Executive at CHI Software Business Development Executive at CHI Software

Rate this article
22 ratings, average: 4.5 out of 5

Related Articles

29 Sep

AI and Voice Recognition Technology: Question of Trust

The more we rely on gadgets, the more passwords we need. And let us admit: it gets tedious. In fact, 60% of people walk away from buying something because the login process is too annoying. How can you make it less complicated for users without compromising security? The answer might be biometrics, like using fingerprints, facial features, or voice recognition. ...

Read more
1 Oct

Machine Learning in Autonomous Driving Industry: CHI Software’s Experience

Machine learning in self-driving cars is the way to use technology, whose scope of the application shows rapid expansion recently. Autonomous vehicles (also known as AV) are a "new black" in the world of navigation, long-distance trucking, and industrial and logistic automation as a whole. According to Globe Newswire, the global machine learning market is going to grow at a CAGR of around...

Read more
8 Dec

Robotic Process Automation in the Banking Industry: How RPA Improves Your Financial Services

You’ve seen it yourself – technologies transform literally every industry, changing markets and customer expectations. What do banks and FIs have to do in such circumstances? They surely need to keep up with innovations.  Let’s look at the numbers. According to PwS, 81% of banking CEOs have concerns about the speed of tech changes. At the same time, workflow optimization, pandemic trends, and high security...

Read more

Let’s bring your idea to
life together!

    Successfully applied!